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SUMMARY

An e�cient fractional two-step implicit algorithm is reported to simulate incompressible �uid �ows in a
boundary-�tted curvilinear collocated grid system. Using the �nite volume method, the convection terms
are discretized by the high-accuracy Roe’s scheme to minimize numerical di�usion. An implicitness
coe�cient � is introduced to accelerate the rate of convergence. It is demonstrated that the proposed
algorithm links the fractional step method to the pressure correction procedure, and the SIMPLEC
method could be considered as a special case of the fractional two-step implicit algorithm (when
�=1). The proposed algorithm is applicable to unsteady �ows and steady �ows. Three benchmark two-
dimensional laminar �ows are tested to evaluate the performance of the proposed algorithm. Performance
is measured by sensitivity analyses of the e�ciency, accuracy, grid density, grid skewness and Reynolds
number on the solutions. Results show that the model is e�cient and robust. Copyright ? 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

When solving �uid dynamic problems, CFD analysts always deal with the challenges of
complex geometries, non-linear physics, solution stability and accuracy, and computation
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e�ciency. With increasing computational capability, numerical experiments have been con-
ducted in developing various CFD modelling technologies.
To handle complex geometries, the boundary-�tted curvilinear coordinate transformation is

one of the techniques developed to improve the applicability of conventional �nite di�erence
and �nite volume methods [1–3]. When adopting curvilinear coordinates, it is desirable to
operate within a collocated grid system, which requires less memory and computational time,
and makes programming more convenient [4–8]. However, collocated grids with simple linear
interpolation of velocities at control volume faces introduce non-physical grid scale oscillations
in the results [4]. This drawback can be overcome by a momentum interpolation method �rst
introduced by Rhie et al. [5], and later modi�ed by Peric et al. [6] and Majumdar [7].
Higher-order schemes are normally used to interpolate the convection �uxes in discretizing

the convection–di�usion transport equations [4, 9]. However, conventional higher-order up-
wind schemes, such as the second-order upwind scheme, QUICK scheme [10], etc., may su�er
from ‘overshoot’ and=or ‘undershoot’ problems in regions where steep gradients exist. This
challenge has led numerical studies in constructing more stable, accurate and e�cient mono-
tonic schemes. Sweby [11] evaluated some advanced schemes in several one-dimensional
�ows, and Tamamidis and Assanis [12] compared the performance of some high-order schemes
for a range of two-dimensional unsteady �ows, i.e. van Leer’s scheme, Roe’s scheme [13]
and Leonard’s SHARP scheme, for a range of two-dimensional unsteady �ows. Their con-
clusion was that the second-order upwind Roe’s scheme was the most accurate and e�cient
scheme among their test cases for pure convection with discontinuity. Other studies on the
applications and comparison of other high-order schemes can be found in References [14–16].
In the simulation of incompressible �uid �ows, a special di�culty arises due to the lack of a

governing equation for the pressure, which results in a weak velocity–pressure coupling. This
problem can be overcome by several approaches. One of the most commonly used methods is
the pressure correction procedure as SIMPLE-type algorithm [4, 17]. However, the extension of
this technique to non-orthogonal curvilinear grids leads to a very complex pressure correction
procedure [3, 18]. Variants of SIMPLE-like algorithm have been continuously developed, for
example, in References [19, 20].
Another successful approach is the fractional step or the projection method [21, 22], which is

often applied to a time-discretized form of the transport equation. The principle of this method
is to split the numerical operators into simpler parts, then apply an individual treatment to
each part according to the properties of these operators.
An e�cient fractional two-step implicit algorithm was proposed by Ye and Dou [23]

initially for simulation of two-dimensional incompressible �ows in Cartesian coordinates with
a staggered grid arrangement. This fractional two-step algorithm was later modi�ed by Ye
and McCorquodale [8] to derive a depth-averaged model.
More recently, this methodology was extended into a fractional three-step algorithm by

Ye et al. [24–26] to develop a three-dimensional hydrodynamic model with boundary-�tted
curvilinear coordinates in horizontal plane, and a �-coordinate transformation in vertical plane.
Applications of this three-dimensional model include the simulation of various free surface
turbulent �ows and mass transport [24–26].
The objectives of this study focus on the development and evaluation of the e�cient

fractional two-step solution procedure following the previous works [8, 23–26]. As to two-
dimensional laminar incompressible �ows, the fractional two-step implicit algorithm is
constructed based on the principle of the fractional method of Benque et al. [21]. Performance
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is measured by sensitivity analyses of the e�ciency, accuracy, grid density, grid skewness
and Reynolds number on the solutions.
Combined with high-accuracy Roe’s scheme, the fractional two-step implicit algorithm

has been modi�ed for the computation of two-dimensional incompressible laminar �ows
in boundary-�tted curvilinear collocated grids. The �nite volume method is employed to
discretize the governing equations. Three benchmark cases are tested to study the perfor-
mance of the proposed model.

2. GOVERNING EQUATIONS

In (x; y) Cartesian coordinates, the governing equations for general two-dimensional laminar
�ows of an incompressible Newtonian �uid can be written as follows:

Continuity equation:

@u
@x
+
@v
@y
=0 (1)

Momentum equations:
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where

�= u; Su= −@p
@x

(3a)

�= v; Sv= −@p
@y

(3b)

Equation (3a) applies to the x-momentum equation, while Equation (3b) is for the
y-momentum equation. In these equations, u; v are the velocity components in the x; y, direc-
tions, respectively, � is the �uid kinematics viscosity, t is time and p is the kinetic pressure
(pressure divided by the �uid density �). For simpli�cation, a constant density is used here
to illustrate the derivation of the algorithm.
Boundary-�tted coordinates (�; �) are introduced to represent the natural irregular geometry:

�= �(x; y), �= �(x; y). In the new coordinate system, the velocities are de�ned as

U = uy� − vx�; V = vx� − uy� (4)

where U;V are called the contravariant velocities which are perpendicular to the �; �
curvilinear coordinates, respectively.
The Cartesian velocity components (represented by ’) are used as dependent variables so

that the momentum equations remain in a relatively simple conservative form [2]. Using the
chain rule, the governing equations in non-orthogonal curvilinear coordinates can be stated as
follows.
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Continuity equation:
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Momentum equations:
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where

�= x�2 + y�2; �= x�x� + y�y�; 	= x�2 + y�2; J = x�y� − x�y� (7)

The source term S’ is given by

Su =−y� @p@� + y�
@p
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when �= u (8)

Sv =−x� @p@� + x�
@p
@�

when �= v (9)

3. NUMERICAL PROCEDURE

3.1. The fractional two-step implicit algorithm

Based on the fractional step approach of Benque et al. [21] for the di�erent transport processes,
the numerical procedure for the fractional two-step implicit algorithm proposed by Ye et al.
[8, 23] is divided into the following two steps:

Step 1: Convection–di�usion process ⇒ un+1=2; vn+1=2;
Step 2: Propagation process ⇒ pn+1; un+1; vn+1.

In this procedure, the superscript n + 1 refers to the time level (n + 1)�t, etc., while
the superscript n + 1=2 is symbolic of the intermediate variables between steps. De�ne, for
convenience, the following primed quantities: [(u; v)= (u1; u2); (U;V )= (U1; U2)]

ui′ = un+1i − un+1=2i ; Ui′ =Un+1
i −Un+1=2

i ; p′=pn+1 − pn; (i=1; 2) (10)

In the propagation step, a coe�cient of implicitness � is introduced for spatial derivatives to
accelerate the rate of convergence [8, 23], e.g. for � direction,
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In application, the known values of the pressure gradient in the momentum equations at the
time level n�t are solved explicitly in Step 1 as source terms; the remainder of which, i.e.
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9p′=9� term, combined with the continuity equations are evaluated in Step 2 [8, 23]. Thus,
the working equations of this fractional step algorithm are:

Step 1: Convection–di�usion process
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Step 2: Propagation process
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3.2. Numerical discretization

The working equations of each step are discretized using the control-volume-based �nite
di�erence method. The notation of Patankar [4] has been adopted throughout the following
derivation. A typical control volume for node P is shown in Figure 1, where the capital
letters E, N, etc. denote the neighbouring nodes and the lower case letters e, n, etc. denote
the control volume faces.

Figure 1. Control volume in: (a) physical; and (b) computational planes.
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In Step 1, the general form of convection–di�usion equation (12) is integrated over a typical
control volume of node P. All spatial derivatives are approximated with central di�erences of
second-order accuracy, except for the convection terms whose face values can be represented
in terms of nodal values by a variety of upwind schemes. To minimize the numerical di�usion,
this paper employs Roe’s scheme [13] in interpolating of convective �uxes because of its good
performance in shock-capture and its high computational e�ciency.
Based on an approximate Riemann solver, Roe [13] constructed a conservative upwind

monotonic scheme of second-order accuracy. Sweby [11] converted Roe’s transfer function
to a �ux limiter, e.g. in a uniform grid system at face e, the convection �ux U� is written
as [11, 12]:

(U�)e = [Fe; 0](�P +�−
e ��

−
e )− [−Fe; 0](�E −�+e ��+e ) (14)

where

��−
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�±
e = [0;min(2r

±
e ; 1); min(r

±
e ; 2)] (16)

r−e = (�E − �P)=(�P − �W); r+e = (�P − �E)=(�E − �EE) (17)

Here Fe =Ue, re is the ratio of consecutive gradients, and �e is the �ux limiter which
corresponds to Roe’s ‘superbee’ compressive transfer function. The term Fe�e�’e is a form
of high-order-limited antidi�usion �ux, and the resulting scheme is monotonic and ensures
oscillation-free solutions.
The �nal discretized form of Equation (12), with ��=��=1, is
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The coe�cients of Equation (18) can be written in the following compact format:
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In two-dimensional computations, Roe’s �ux-limiting scheme is a 9-point stencil and is
conservative.
Other schemes can be incorporated easily in the code. For example, the Power-law scheme

[4] will be constructed, if Equation (19) is replaced by the following Equation (20).

A(|P|)= [0; (1− 0:1|P|)5]; Banti ≡ 0 (20)

Thus, the equations in Step 1 are discretized as follows.

u-momentum equation
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v-momentum equation
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In Step 2, from Equations (13a) and (13b), one obtains u′; v′ as
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then,
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V ′= v′x� − u′y�= − C @p
′
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@�
where d=��t=J; B= �d; C= 	d (25)

The above relations can be applied to any location, that is, at either a grid node or control
volume face. To simplify the pressure correction equation and keep the 5-point diagonal
equation set, the last term on the right-hand side of Equations (24) and (25) can be dropped
without a�ecting the �nal converged results. Thus,

U ′ ≈ −B@p
′

@�
; V ′ ≈ −C @p

′

@�
(26)

Substituting Equation (26) into Equation (13c), the �nal pressure correction equation is

APpP′ =	Anbpn′b + E (27)

where

AE =�Be; AW =�Bw; AN =�Cn; AS =�Cs

AP =	Anb; E=Un+1=2|we + Vn+1=2|sn

In Step 2, the pressure propagation process of the proposed algorithm resembles the
velocity–pressure correction procedure in the SIMPLE-like algorithm. In comparison to the
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corresponding process of the SIMPLEC algorithm [17, 18] in non-orthogonal curvilinear grids,
it is obvious that the derivation of the velocity and pressure correction equations (23), (26)
and (27) is much simpler and straightforward. In fact, when �=1, these velocity and pressure
correction equations become those derived by the SIMPLEC algorithm [17, 18, 23]. Thus, the
SIMPLEC method could be considered as a special case of the current proposed fractional
step method. In other words, the proposed fractional two-step implicit algorithm links the
fractional method and the pressure correction procedure together. Similar conclusions can be
found in References [8, 23].

3.3. Pressure–velocity coupling

Since collocated grids having been adopted, all the dependent variables are stored at the grid
nodes and interpolation is needed to estimate the convective �ux at the control volume faces,
e.g. Un+1=2

e ; V n+1=2n , in the source term E of Equation (27). To avoid checkerboard oscillatory
solutions caused by simple linear interpolation between the neighbouring nodal values [4],
the revised momentum interpolation procedure of Majumdar [7] is used since the converged
solution of this method is independent of the relaxation parameter (or time step �t in the
unsteady approach). The values of U at the e cell face can be expressed as
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P 〉e +
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p
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e
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−
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) (
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@�

)
P

〉
e

(28)

where the overbars denote the control volume face values estimated by linear interpola-
tion between the neighbouring nodal values. The expressions of Bu; Bv, etc. are given in
Equations (21) and (22). The contravariant velocity V at the north cell face can be expressed
similarly.

3.4. Solution procedure

The overall numerical procedure of the proposed two-step implicit fractional step algorithm
can be summarized as follows:

1. the known values of un; vn; pn at time n�t are used to evaluate the coe�cients of the
convection–di�usion Equation (12) and obtain velocities un+1=2; vn+1=2 through
Equations (21) and (22) at the grid nodes to complete Step 1.

2. interpolate Un+1=2; V n+1=2, etc. onto the cell faces.
3. solve Equation (27) for p′ and pn+1, then obtain Un+1; V n+1 according to Equations (26)
and (10) to complete Step 2.

4. solve the discretized transport equations for other scalar variables to �nish the current
time step (no other transport equation is to be solved here).

5. return to 1 and march to the next time step.
6. repeat the whole procedure until a steady-state solution is reached (for steady-state �ow)
or the speci�ed time period is completed (for unsteady �ow).
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As derivation procedure showed above, the proposed algorithm is applicable to both unsteady
and steady �ows. In the present study of stead �ows, the time-marching scheme is used as a
technique to obtain a steady-state solution as a limiting case. The algebraic equation sets are
solved sequentially using the familiar tridiagonal matrix algorithm (TDMA) on a grid line.
The convergence criterion adopted is that the non-dimensional total mass residuals (R) be
less than a certain value. The typical value of the implicitness coe�cient � is in the range of
0.5–1. As shown by Ye et al. [22], the rate of convergence can be signi�cantly accelerated
by reducing � from 1 to its optimal value.

4. NUMERICAL RESULTS AND DISCUSSION

Three two-dimensional test problems have been used to investigate the performance of the
proposed numerical model. The three cases are (1) pure convection of a box-shaped pro�le, for
model veri�cation by comparison to an analytical solution; (2) laminar �ow over a backward-
facing step, for model validation by comparison to experimental data of Armaly et al. [27];
(3) skewed driven cavity laminar �ow, benchmarking for ‘code-to-code’ comparison.

Case 1: Pure convection of a box-shaped pro�le
The �rst problem is the transport of ’ (any scalar quantity) in a two-dimensional skewed

constant �ow �eld without physical di�usion e�ects. A discontinuous step pro�le (’=1 or
’=0) is imposed along the left-hand and front upstream boundaries, as shown in Figure 2.
Pure convection of ’ is conducted in an oblique uniform �ow �eld at an angle of 45◦ to
the x-axis, and the discontinuity must be maintained downstream. This test problem was �rst
selected by Gaskell and Lau [14] in their SMART scheme veri�cation because the severe
change in the gradient of ’ is representative of many practical �ow situations.
In a square domain with a uniform 41× 41 grid (�x=�y=1), Figures 2(a) and (b) show

the prediction by Roe’s and the �rst-order upwind scheme, respectively. The computations

Figure 2. Pure convection of a box-shaped pro�le at 45◦ to the x-axis by: (a) Roe’s
scheme; and (b) �rst-order upwind scheme.
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indicate that the poor performance of the �rst-order upwind scheme tends to smear the
box-shaped pro�le due to the high numerical di�usion. For example, along the halfway
cross section, i.e. x=20, the maximum and minimum values of ’ calculated by the �rst-
order scheme are ’max =0:89 and ’min =0:24× 10−3, respectively (as compared with the
exact solutions ’max =1 and ’min =0). Roe’s scheme, by contrast, exhibits an excellent
performance in capturing the discontinuity of the steep gradient of ’. Along the
halfway cross section, the maximum and minimum values of ’ simulated by Roe’s
scheme are ’max =1 (no overshoot) and ’min = − 0:11× 10−7 (nearly no undershoot),
respectively.
This pure convection problem veri�es that Roe’s scheme is able to minimize the numerical

dispersion without introducing signi�cant over- and=or under-shooting.

Case 2: Laminar �ow over a backward-facing step
Flow separation is of fundamental importance in �uid mechanics. One of the simplest

�ows modelling the separation–reattachment process is the backward-facing step �ow due to a
sudden change of the geometry. The laminar case of Armaly et al. [26] is considered here
to study the performance of the proposed algorithm, including the convergence, stability,
accuracy, grid sensitivity and non-orthogonality. The backward-facing step geometry has
become a standard test problem for code validation [28], and systematic study of its nu-
merical solutions can be found in References [28–31].
Figure 3 illustrates the �ow past a backward-facing step. x1 is the reattachment location of

the primary recirculation. x2 and x3 are the separation and reattachment points, respectively,
of the secondary recirculation at the top wall. The expansion ratio of the inlet channel height
h (here h=1) to the outlet height is 1:2. The Reynolds number is de�ned as Re=U0D=�
using 2h as D and the mean u-velocity at the step as U0. At low Reynolds numbers, a single
recirculation zone appears behind the step. At higher Reynolds numbers, the adverse pressure
gradient is strong enough to cause an upper separating zone, as shown in Figure 3. As long
as the �ow is laminar, the separation zones increase in size with increasing Reynolds number
[27]. The reattachment length is a sensitive parameter often used to appraise the overall
predictive capability of a numerical method. The recirculation zones reduce in length when
numerical di�usion, arising from discretized convection terms, overwhelms the true viscosity
of the �ow. For higher Reynolds numbers (Re¿ 400), the three-dimensional �ow structures
a�ect the primary separation–reattachment across the �oor of the downstream channel, and

Figure 3. Laminar �ow past a backward-facing step.
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two-dimensional models can exhibit certain disagreement between the numerical and experi-
mental results [27, 28].
The boundary conditions include no-slip velocity speci�cation at all solid walls and pre-

scribed fully developed laminar parabolic velocity pro�le at the inlet, situated at a distance
4h upstream of the step. The outlet boundary is set far downstream from the step so that the
�ow leaves the domain of interest without perturbing the upstream �ow. Across the outlet,
a parallel �ow (Neumann condition) is prescribed and the pressure is set to zero. Previous
studies have suggested 32h downstream of the step as the appropriate location of the outlet
[30, 32, 33]. The sensitivity of the solution to the location of the outlet boundary conditions
was investigated numerically by Gartling [29] for the case of Armaly et al. [27] at Re=800.
This study indicated that the length of 32h would not be su�ciently long for the constant
pressure assumption at the outlet. The downstream channel length was taken as 60h at
Re=800 in Gartling’s study. In the present work with Re=600, the outlet is located at
45h downstream of the step, providing both reasonable accuracy and economics.
The computations have been carried out on three non-uniformly distributed grids, namely,

90× 20 (coarse) grid, 260× 40 (�ne) grid and 350× 80 (very �ne) grid. The Reynolds num-
bers selected are Re=100, 200, 300, 400, 500, 600. The convergence criterion is that the
non-dimensional total mass residuals R reduce to less than 10−5. The recirculation parameters
x1; x2; x3 are determined by interpolation using longitudinal velocity data at the locations near
the reattachment and separation positions.

Grid dependence (re�nement) and numerical di�usion

Reattachment and separation lengths from the �nest grid are considered as the grid-independent
results. Comparison with the data of Armaly et al. [27] is presented in Figure 4. For the
primary reattachment length x1, agreement between the simulation and measurement is good at
the lower Reynolds numbers (Re¡ 400); however, at the higher Reynolds number (Re¿ 400),
the discrepancy increases with increasing Reynolds numbers because of three-dimensional
e�ects as demonstrated by Williams and Baker [28]. The upper wall recirculation parameters
x2; x3 are reasonably well predicted. These conclusions are consistent with others [28, 30, 32].

Figure 4. Comparison of the predicted reattachment and separation lengths with the measurement of
Armaly et al. [27] and simulation of Barton [30].
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Table I. Primary recirculation size x1=h for various grids and
(percentage di�erence) from the predicted grid-independent

results for Re=100 and 300.

Grid Re=100 Re=300

90× 20 2.83 (−1.5) 6.48 (−3.2)
260× 40 (G1) 2.87 (−0.14) 6.65 (−0.6)
350× 80 2.874 (0.0) 6.69 (0.0)

Table II. Separation lengths for various grids and (percentage di�erence)
from the predicted grid-independent results for Re=500.

Grid x1=h x2=h x3=h

90× 20 8.54 6.94 12.92
(−8.5) (−11.1) (−1.2)

260× 40 (G1) 9.17 7.62 13.07
(−1.7) (−2.4) (−0.08)

350× 80 9.33 7.81 13.08
(0.0) (0.0) (0.0)

The simulation results from an other high-accuracy scheme [30] are also shown in Figure 4
for comparison.
Generally, the reattachment and separation positions (x1; x2; x3) grow with grid re�nement.

The primary recirculation zone (x1) behind a backward-facing step becomes larger as the
Reynolds number increases. Table I gives the results on the three grids for the �ows in
lower Reynolds numbers, i.e. Re=100 and 300. Predictions from the �ne grid approach the
grid-independent results (relative variation around 1% is considered as close enough to be
the same).
At higher Reynolds number, the upper recirculation zone is generated in addition to the

primary recirculation zone. Performance of various grids and the percentage di�erence from
the estimated grid-independent results are presented in Table II (for Re=500), and Table III
(for Re=600). In the case of Re=500, with the coarse grid, the results are considerable
discrepancy for x1 and x2, while the prediction of x3 gives a reasonably good solution (with
1.2% underestimation). As the grid is re�ned, the solutions are improving. On the �ne grid,
it produces reasonably accurate solutions for x1 and x3. Because the upper separating region
interacts with the primary recirculation zone, the separation position x2 is very sensitive and
di�cult to resolve. Considering this e�ect, the results from the �ne grid are in good agreement
with the grid-independent results from the �nest grid.
The Power-law scheme is also tested in the same program code, just substituting

Equation (19) by Equation (20). Results from Re=600 are presented in Table III for com-
parison. It shows that the results from the Power-law scheme gives a much higher percentage
change of the results as the grid is re�ned, and the reattachment and separation positions
(x1; x2; x3) are underestimated in all grids. Table III also indicates that even with the �nest
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Table III. Separation lengths for various grids and (percentage di�erence)
from the predicted grid-independent results for Re=600.

x1=h x2=h x3=h

Grid Roe’s Power-law Roe’s Power-law Roe’s Power-law

90× 20 9.15 8.67 7.1 6.67 15.2 11.5
(−10.2) (−15.0) (−14.3) (19.4) (−3.2) (−26.8)

260× 40 9.98 9.48 8.0 7.46 15.6 14.55
(−2.1) (−7.1) (−3.4) (9.9) (−0.6) (−7.32)

350× 80 10.2 9.85 8.28 7.82 15.7 15.15
(0.0) (−3.4) (0.0) (−5.5) (0.0) (−3.5)

Figure 5. Computational e�ort with variation of � for Re=100.

mesh, the results from the Power-law scheme are still worse than that from Roe’s scheme
with the �ne mesh. Similar solutions and conclusions were obtained by Barton [30] for the
same problem at Re=600 with the Hybrid scheme on a very �ne 250× 128 grid.

Convergence, stability and computation e�ort of the proposed algorithm

The performance of the proposed fractional two-step implicit algorithm is studied by varying
the implicitness coe�cient � between 0.5 and 1, while �=1 corresponds to the SIMPLEC
time-marching algorithm. Figures 5 and 6 illustrate the computational e�orts for selected �
over a range of dimensionless time steps �tU0=h on the coarse grid of 90× 20. The results are
driven to the same level of convergence (R=10−5). Figure 5 shows the case of Re=100. The
computational costs decrease continuously over a wider range of time step for convergence as
� reduces from 1.0 to 0.75; however, reduction of � to 0.65 leads to higher computational
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Figure 6. Computational e�ort with variation of � for Re=300.

Figure 7. Convergence histories for Re=100.

e�ort and a narrower range of convergence. Further reduction of � may cause instability. This
indicates that there exists an optimal value of � and time step �t. The computational e�ort
saved in the optimal value of �=0:75 is about 30–40% in comparison with the SIMPLEC
algorithm (�=1), depending on the time step. A similar conclusion can be drawn for �ow
at Re=300, as demonstrated in Figure 6. Figures 7 and 8 depict the convergence histories
against the time-marching steps for �=0:75 and 1 (SIMPLEC), and the Reynolds num-
bers Re=100 and 300, respectively. The time steps are at their optimal values as shown in
Figures 5 and 6. The convergence histories indicate the improvements achieved by the present
algorithm.

Non-orthogonality of grids

The above computations were carried out in a rectangular grid system by taking advantage of
the simple geometry of the problem. To evaluate the robustness of the code, it is desirable to
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Figure 8. Convergence histories for Re=300.

Table IV. Primary recirculation size x1=h for
non-orthogonal grids and (percentage di�erence) from
the estimated grid-independent result for Re=300.

Non-orthogonal grids
(260× 40) x1=h

G2 6.67 (−0.3)
G3 6.66 (−0.45)

Table V. Separation lengths for non-orthogonal grids and (percentage di�erence)
from the predicted grid-independent result for Re=500.

Non-orthogonal
grids (260× 40) x1=h x2=h x3=h

G2 9.23 7.66 13.03
(−1.1) (−1.9) (−0.38)

G3 9.16 7.59 13.19
(−1.8) (−2.8) (+0.84)

run it on non-orthogonal grids. Two non-orthogonal grids have been employed with density
of 260× 40, the same grid number as the �ne rectangular grid (denoted as G1 hereafter).
The non-orthogonal grids (denoted as G2 and G3) are designed to have a varying angle of
−35Exp[−0:022(x=h−11)2] and −35Exp[−0:022(x=h−11)2] degrees, respectively, against the
xaxis at y=h=1. The maximum skew grid (angle of 35◦) is located at x=h=11 around both
recirculation regions in the higher Reynolds number �ows. Results from the non-orthogonal
G2 and G3 grids and the percentage di�erence from the estimated grid-independent results
are presented in Table IV (for Re=300), and Table V (for Re=500). It is observed that the
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Figure 9. (a) Predicted velocity vector �elds (non-dimensionalized by U0) at Re=300
for (I) G1, (II) G2, and (III) G3 grids; and (b) predicted streamlines at Re=300 for

(I) G1, (II) G2, and (III) G3 grids.
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Figure 10. (a) Predicted velocity vector �elds (non-dimensionalized by U0) at
Re=500 for (I) G1, (II) G2 , and (III) G3 grids; and (b) predicted streamlines

at Re=500 for (I) G1, (II) G2, and (III) G3 grids.

relative variation of the results on the non-orthogonal grids is within 1% in comparison with
the corresponding solutions on the rectangular G1 grid (Tables I and II), i.e. the characteristics
of the recirculation regions in these three grids are virtually the same. Figures 9 and 10
present the velocity vector �elds and streamline contours for Re=300 and 500, respectively.
Figures 9(a) and 10(a) also illustrate the grid distribution. The �ow patterns on the three
grids closely resemble each other.

Case 3: Skewed driven cavity laminar �ow
Skewed driven cavity laminar �ows were set up by Demirdzic et al. [34] for non-orthogonal

grids as benchmark cases that have been computed by a number of researchers [31, 34–36].
The case with �=45◦ is considered here as shown in Figure 11 with two di�erent Reynolds
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Figure 11. Geometry and boundary conditions for the skewed driven laminar cavity �ow.

numbers, Re=100 and 1000 (Re=ULL=v). Experimental data are not available in literatures.
The domain is a parallelogram of length L=1, the velocity at the moving top wall is UL=1
and the velocities speci�ed at the other three walls are zero. In the benchmark computations
by Demirdzic et al. [34], six non-orthogonal grids were chosen with the computations on the
�nest 320× 320 grid selected as the reference.
Three uniform non-orthogonal grids are selected to study the grid re�nement e�ect, namely,

the coarse 40× 40 grid, the �ne 80× 80 grid, the �nest 160× 160 grid. The convergence
criterion is that the total mass residuals R fall to less than 10−5. The implicitness coe�cient
used is �=0:75.
The Cartesian velocity u and v pro�les along the centrelines CL1 and CL2 are compared in

Figures 12(a) and (b) with the benchmark solutions [34] for Re=100. For the lower Reynolds
number �ow, it is remarkable that the results on all three grids are very close each other, and
in excellent agreement with the benchmark computations.
Figures 13(a) and (b) illustrate the results for Re=1000 on the three grids. As it is shown,

accurate simulations of the velocities at the centrelines are obtained by the grid re�ned.
In fact, on the �nest grid, predictions from the proposed model agree very closely with the
benchmark solutions.
For comparison, Figures 13(a) and (b) also gives the computations from the Power-law

scheme. The results from the Power-law scheme on the coarse and �ne grids illustrate signif-
icant discrepancy from the benchmark data, although on the �nest grid, the results are almost
identical with that from the proposed model.
The streamline patterns from the �nest grid are presented in Figure 14 for Re=100 and

1000. These results are quite similar to those of Demirdzic et al. [34].

5. CONCLUSIONS

In this study, a two-dimensional numerical model for incompressible �uid �ows has been
developed in boundary-�tted curvilinear coordinates with a collocated grid arrangement. An
e�cient fractional two-step implicit algorithm has been described in detail. The derivation is
simple and straightforward. An implicitness coe�cient � is introduced to accelerate the rate
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Figure 12. (a) Velocity pro�le (u) along CL1 against grid density for Re=100; and (b) velocity pro�le
(v) along CL2 against grid density for Re=100.

of convergence. The �nal formulas are similar to that in the pressure correction procedure,
i.e. the well-known SIMPLEC method could be considered as a special case of the proposed
fractional two-step implicit algorithm (when �=1). In other words, the proposed algorithm
links the fractional step method to the pressure correction procedure.
Three typical test cases have been selected, i.e. a pure convection problem, and two laminar

separating �ows. The performance of the proposed algorithm has been studied systematically
by sensitivity analyses of the e�ciency, accuracy, grid density, grid skewness and Reynolds
number on the solutions.
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Figure 13. (a) Velocity pro�le (u) along CL1 against grid density for Re=1000; and (b) velocity
pro�le (v) along CL2 against grid density for Re=1000.

The proposed algorithm signi�cantly reduces the CPU cost at the optimal � compared with
that of the SIMPLEC method, e.g. 30–40% less CPU time in Case 2. Also the computational
e�ort for convergence declines continuously over a broader range of time step at the optimal
�. The optimal � varies typically in the range of 0.75–1 depending on the problems solved.
Studies also demonstrate that the solutions are relatively insensitive to grid skewness. As

shown in Cases 2 and 3, simulations on various skewed grids predict either virtually the same
results and=or in good agreement with other’s data.
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Figure 14. Predicted streamlines for: (a) Re=100; and (b) Re=1000.

Although the second-order upwind Roe’s scheme has been used, other higher-order schemes
can also been incorporated for discretization of the convective terms to minimize the possible
numerical di�usion. As a reference, some computations in cooperated with the �rst-order
scheme are included for comparison. As shown in the applications, simulations with the
Power-law scheme present poor performance on relative coarse grids. This indicates that the
�rst-order schemes may fail to give reliable solutions in the cases of high Reynolds number
recirculation �ow with a relatively coarse size grid due to high numerical di�usion. This
conclusion is consistent with that of Tamamidis and Assanis [12].
Numerical tests have demonstrated that the proposed two-dimensional model is e�cient and

robust. Currently, this method is being applied to problems with complex physical domains,
and has been extended to three-dimensional turbulent �ows and mass transport [8, 24–26].
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